Minireview: GNAS: normal and abnormal functions.
نویسندگان
چکیده
GNAS is a complex imprinted gene that uses multiple promoters to generate several gene products, including the G protein alpha-subunit (G(s)alpha) that couples seven-transmembrane receptors to the cAMP-generating enzyme adenylyl cyclase. Somatic activating G(s)alpha mutations, which alter key residues required for the GTPase turn-off reaction, are present in various endocrine tumors and fibrous dysplasia of bone, and in a more widespread distribution in patients with McCune- Albright syndrome. Heterozygous inactivating G(s)alpha mutations lead to Albright hereditary osteodystrophy. G(s)alpha is imprinted in a tissue-specific manner, being primarily expressed from the maternal allele in renal proximal tubules, thyroid, pituitary, and ovary. Maternally inherited mutations lead to Albright hereditary osteodystrophy (AHO) plus PTH, TSH, and gonadotropin resistance (pseudohypoparathyroidism type 1A), whereas paternally inherited mutations lead to AHO alone. Pseudohypoparathyroidism type 1B, in which patients develop PTH resistance without AHO, is almost always associated with a GNAS imprinting defect in which both alleles have a paternal-specific imprinting pattern on both parental alleles. Familial forms of the disease are associated with a mutation within a closely linked gene that deletes a region that is presumably required for establishing the maternal imprint, and therefore maternal inheritance of the mutation results in the GNAS imprinting defect. Imprinting of one differentially methylated region within GNAS is virtually always lost in pseudohypoparathyroidism type 1B, and this region is probably responsible for tissue-specific G(s)alpha imprinting. Mouse knockout models show that G(s)alpha and the alternative G(s)alpha isoform XLalphas that is expressed from the paternal GNAS allele may have opposite effects on energy metabolism in mice.
منابع مشابه
Non-Coding RNAs at the Gnas and Snrpn-Ube3a Imprinted Gene Loci and Their Involvement in Hereditary Disorders
Non-coding RNAs (ncRNAs) have long been recognized at imprinted gene loci and provided early paradigms to investigate their functions and molecular mechanisms of action. The characteristic feature of imprinted genes, their monoallelic, parental-origin-dependent expression, is achieved through complex epigenetic regulation, which is modulated by ncRNAs. This minireview focuses on two imprinted g...
متن کاملDistinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB.
Pseudohypoparathyroidism type IB (PHPIB) is associated with abnormal imprinting of GNAS, the gene encoding the heterotrimeric G protein Gsalpha and other alternative products. The gene contains three differentially methylated regions (DMRs) located upstream of the Gsalpha promoter (from upstream to downstream): the paternally methylated NESP55 promoter region, the maternally methylated NESP ant...
متن کاملA patient with features of albright hereditory osteodystrophy and unusual neuropsychiatric findings without coding Gsalpha mutations
BACKGROUND Pseudohypoparathyroidism(PHP) is a heterogeneous group of rare metabolic disorders characterized by hypocalcemia and hyperphosphatemia resulting from PTH resistance. Different forms of PHP have been reported based on biochemical and clinical manifestation and genetic findings. Most of these forms are caused by defects in GNAS, an imprinted gene locus with multiple subunits. We report...
متن کاملImprinted Nesp55 influences behavioral reactivity to novel environments.
Genomic imprinting results in parent-of-origin-dependent monoallelic expression of selected genes. Although their importance in development and physiology is recognized, few imprinted genes have been investigated for their effects on brain function. Gnas is a complex imprinted locus whose gene products are involved in early postnatal adaptations and neuroendocrine functions. Gnas encodes the st...
متن کاملAltered GNAS imprinting due to folic acid deficiency contributes to poor embryo development and may lead to neural tube defects
Disturbed epigenetic modifications have been linked to the pathogenesis of Neural Tube Defects (NTDs) in those with folate deficiency during pregnancy. However, evidence is lacking to delineate the critical region in epigenome regulated by parental folic acid and mechanisms by which folate deficiency affects normal embryogenesis. Our data from clinical samples revealed the presence of aberrant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 145 12 شماره
صفحات -
تاریخ انتشار 2004